
Making Your Research Go Faster:
Advanced HPCC

CI-Days
October 23, 2014

Dirk Colbry
colbrydi@msu.edu

Director, High Performance Computing Center
Institute for Cyber-Enabled Research

© 2014 Michigan State University Board of Trustees.

https://wiki.hpcc.msu.edu/x/5AJZAQ

https://wiki.hpcc.msu.edu/x/5AJZAQ

Agenda

• Overview
• Advanced System Description
• Powertools
• Doing more faster

– Pleasantly Parallel, Shared Memory, Shared Network,
Accelerators, Standard Libraries

• Tricks and tips

Assumptions

• You have logged in and used the HPCC or
similar system

• You are familiar the the Linux command
line

• You have some programming / scripting
experience

• You are here to learn how to leverage
HPCC resources better

How this workshop works

• I think you work best from doing. So we will do
a lot of hands on examples.

• When you get tired of listening to me talk, skip
ahead to an exercise and give it a try.

• Exercises are denoted by the following icon in
your notes:

Red and Green Flags

• Use the provided sticky notes to
communicate without raised hands:
–NO Sticky = I am working
–Green = I am done and ready to

move on
–Red = I am stuck and need more

time and/or I could use some help

Submission Scripts

• Design Goals
– One script does everything
– Easy to read
– Easily given to others
– Easily moved to different directories

Agenda

• Overview
• Advanced System Description
• Powertools
• Doing more faster

– Pleasantly Parallel, Shared Memory, Shared Network,
Accelerators, Standard Libraries

• Tricks and tips

What problems are we solving?

• Simulations
• Data Analysis
• Search

Image Provided by Dr. Mantha
Phanikumar, MSU

Images from, “Understanding the H2 Emission
from the Crab Nebula”, C.T. Richardson, J.A.
Baldwin, G.J. Ferland, E.D. Loh, Charles A.
Huehn, A.C. Fabian, P.Salomé

Image Provided by Dr.
Warren F. Beck, MSU

Simulations

• Typically System of PDE (Partial Differential equations)
– Fluid dynamics
– Finite element analysis
– Molecular dynamics
– Weather
– Etc.

• Mathematically equivalent to inverse of a matrix

Premixed mixture of H2 -air auto igniting and flame propagation at supersonic flow
Provided by Dr Jabari and Mani (Abolfazl) Irannejad

Data Analysis

• Computer vision tasks
• Some Bioinformatics
• Astrophysics
• Etc.

Video Provided by Dr. Fred Dyer

Search

• Genome
sequencing

• Analytics
• Optimization
• Etc.

Evolution of an artificial organism that can move
and forage for food, Dr. Nicolas Chaumont

HPC Systems

• Large Memory Nodes (up to 6TB!`)
• GPU Accelerated cluster (K20, M1060)
• PHI Accelerated cluster (5110p)
• Over 600 nodes, 7000 computing cores
• Access to high throughput condor cluster
• 363TB high speed parallel scratch file space
• 50GB replicated file spaces
• Access to large open-source sofware stack and specialized

bioinformatics VMs

Free Access to software

• Compiled open-source sofware stack
– Close to 2000 titles!

• Optimized Math/Communications libraries
• Some commercial sofware available

– E.g. Ansys, MATLAB (+many toolboxes), Stata,
Gauss, SAS

Full list: http://wiki.hpcc.msu.edu

http://wiki.hpcc.msu.edu/

General Purpose Clusters

Processors /
Sockets

Rack

Cores

Nodes

Chassis

Commodity Cluster

High Speed Network

Buy-In Opportunities

• We will maintain your computers for you
• Researchers get exclusive use of their nodes

within 4 hours of submitting a job
• Buy-in jobs will automatically overfow into

the general resources.

Current Buy-In options (2014)

• 20 cores, 64 Gb, $3,806*
• 20 cores, 256 Gb, $5339*
• 20 cores, 128 Gb, 2 Nvidia K20, $7899*
• 20 cores, 128 Gb, 2 Intel 5115P, $9043*
• 48 cores, 1 Tb, $29,979
• 48 cores, 1.5 Tb, $34,989
• 48 cores, 3 Tb, $60,995
• 96 cores, 6 Tb, $142,772
• Replicated storage: $175/TB per year

* Some grant/funding agencies require a chassis for an additional $1216 (8 slots).

Large Shared Memory Systems (Fat Nodes)

Shared Memory Communication

• Fast!
• Cores on a system

share the same
memory

• OpenMP
• Fat nodes

– 96 cores
– 6TB of memory

Accelerated Systems

GPU

• Cards used to render
graphics on a
computer

• Hundreds of cores
• Not very smart cores
• But, if you can make

your research look
like graphics
rendering you may
be able to run really
fast!

Intel Xeon Phi

• Cross between CPU and GPU
• About 61 Pentium III cores

– Less cores/slower than GPU
– Easier to use than GP

High Throughput HTCondor Cluster

MSU HTCondor Cluster

• Runs like a screen saver and Scavenges CPU
cycles:
– Approximately 400+ nodes
– Approximately 7000 cores
– Windows 7

Agenda

• Overview
• Advanced System Description
• Powertools
• Doing more faster

– Pleasantly Parallel, Shared Memory Parallelization,
Shared Network, Accelerators, Standard Libraries

• Tricks and tips

What are Powertools

• Powertools are scripts and programs to make
interfacing with the HPCC simpler

• The tools are writen mostly by HPCC staff and
users.

• Think of most of these as “Beta” sofware.

How to Access Powertools

• When you are logged on to gateway or the
developer nodes, load the powertools module
file:
>module load powertools

• To list the currently available tools type
“powertools” afer loading the powertools
module
>powertools

Common Powertools

• Any developer node shortcut
> dev

• Developer node shortcuts
(intel07, gfx08, intel09, gfx10, gfx11, intel14)

• Two commands in one:
– Automatically ssh directly to the developer

node
– Then automatically cd to the current directory

from the previous node

More Common Powertools

• powertools – list powertools and common
commands not standard on linux systems

• sj – show jobs in the queue for the current user
• starttime – show estimated start times for a job
• mailme – E-mail yourself a file
• clusterstate – show a summary of the current state

of the nodes in the cluster

Even More Powertools

• getexample – provides a copy of examples for
various tasks writen by iCER staff

• quota – list your home directory disk usage
• priority_status – Shows the status of an

individuals buy-in nodes.
• poweruser – Set up your account to load

powertools by default

How to turn on powertools as default?

• Edit your .bashrc
> nano ~/.bashrc

• add the following line:
module load powertools

• Note: this is required if you want to use the
developer node shortcuts and hop between
different nodes

Note: You can also just
use the “poweruser”
powertool

Agenda

• Overview
• Advanced System Description
• Powertools
• Doing more faster

– Pleasantly Parallel, Shared Memory Parallelization,
Shared Network, Accelerators, Standard Libraries

• Tricks and tips

What is the Bottleneck

• Not enough Memory
– Solution: use a bigger node (6tb 96 cores)

• Slow File I/O
– Solution: use scratch
– Solution: use a ram disk

• Too many calculations
– Solution: run your code in parallel

Steps to parallel code

Note: Every application is different

1. Analyze your code
– Profilers (gprof, vtune, map, perfreport, tau)
– Debuggers / memory trackers (gdb, ddt, totalview)

1. Optimize calculations
– Trade memory for time (i.e., never do the same

calculation twice)
1. Find ways to parallelize

– Look for loops
– Find iterations independent from each other
– Determine how much information needs to be

transferred

Single Thread Jobs
T

im
e

One CPU can only
run one thing at a
time. (sort of)

Pleasantly Parallel
T

im
e

Loosely Coupled
T

im
e

Tightly Coupled
T

im
e

Communication

• Shared Memory
• Shared Network
• Distributed Network
• Dedicated Accelerators
• Hybrid Systems

Pleasantly Parallel

Pleasantly Parallel
T

im
e

How fast can we go?

• T - How long does each operation take?
• N - How many operations do you need to run?
• CPUs – Number of Cores job will run on.

• Single CPU time estimate:
– TxN

• Best possible Pleasantly parallel time:
– (TxN)*overhead/CPUs

Who are you? -- Biometrics

Pairwise-All Problem

• Database of faces
• Compare everything to everything else
• Calculate a Matching score to use for

identification

943 x 943 Similarity Matrix

Estimated Calculation Times

• Preprocessing
– 943 * 12 (seconds) 189 Minutes

• Matching
– 943 * 943 * 5 (seconds) 103 Days

• Scans matched to themselves always result in 0 mm
• (943 * 943 – 943) * 5 (seconds) 103 Days

• The Proposed Alignment Algorithm is symmetric.
• (943 * 943 – 943)/2 * 5 (seconds) 51.5 Days

46

• We also load models once per row instead of every time
• (943*943-943)/2 * 3 (seconds) + 943 * 2 (seconds) 31 Days

Calculation Time for Full Similarity Matrix

47

0

20

40

60

80

100

120

Full Matrix Full Matrix less
Same scan

files

Full Matrix less
Equivalent
Matches

Single load of
model files

Multi-
Computer

system

D
a
y
s

2.5 Days

31 Days

51 Days

103 Days

48

How do we go even bigger?

• 5000 scans.
– 1.5 years on a single processor computer
– 13 days on our ad-hoc cluster.
– 1.5 days a commodity cluster at MSU

Steps to Pleasantly Parallel

• Figure out command line
• Estimate single job time:

– Should be > 5 minutes
– Should be < 1 week
– Best if < 4 hours

• Make a submissions script
• Submit Job

Pleasantly Parallel Example

• Folder full of input files:

• Want folder full of output files:

• Command Syntax:
./myprogram inputfile > outputfile

1.in 5.in 9.in 13.in 17.in

2.in 6.in 10.in 14.in 18.in

3.in 7.in 11.in 15.in 19.in

4.in 8.in 12.in 16.in

1.out 5.out 9.out 13.out 17.out

2.out 6.out 10.out 14.out 18.out

3.out 7.out 11.out 15.out 19.out

4.out 8.out 12.out 16.out

PBS Job Arrays

• One submission script copied many times
• Uses the PBS –t option

– Ranges: 1-10
– Lists: 2,4,100,3
– Combination: 1-10,20,50,100

• Distinguish between jobs by using the
PBS_ARRAYID environment variable

Simple Job Array

#!/bin/bash –login

#PBS –l walltime=00:05:00,mem=2gb

#PBS –l nodes=1:ppn=1,feature=gbe

#PBS –t 1-19

cd ${PBS_O_WORKDIR}

mkdir ${PBS_ARRAYID}

Cd ${PBS_ARRAYID}

../myprogram ../${PBS_ARRAYID}.in > ${PBS_ARRAYID}.out

qstat –f ${PBS_JOBID}

Example: Job Arrays

• Get the bleder_farm example:
>getexample

>getexample blender_farm

>cd ./blender_farm

• Look at the qusb file, using “less” command
>less blender_farm.qsub

• Submit the job
>qsub blender_farm.qsub

HPCC Job array limitations

• Can not have more than 520 cores running at
once

• Can not submit more than 1000 jobs at once
• Each job can not run longer than one week

• Lots of ways to work around these limitations

Job array numbers

• All numbers in a job array have the
same base number
– 7478210

• Each PBS_ARRAYID is show in square
brackets
– 7478210[1]
– 7478210[2]

• Delete all jobs using one command
– qdel 7478210[]

Unrolling Loops

• Your program has independent loops
– Each iteration of the loop does not depend on the

other iterations
– Loop can be executed in any order
– 5 Minutes < Iteration Time < 1 week
– Output of each iteration must be easy to save and

recombine for next step of workflow

• Rewrite your program to accept an iteration
number as an input
– ./myprogram IterationNumber

• Rewrite your program to save output and use an
additional program for post processing

Simple Unrolled Loop

#!/bin/bash –login

#PBS –l walltime=00:05:00

#PBS –l nodes=1:ppn=1,feature=gbe

#PBS –t 1-100

cd ${PBS_O_WORKID}

./myprogram ${PBS_ARRAYID}

qstat –f ${PBS_JOBID}

Task Queue

• A list of tasks (also called treatments, inputs,
…) that distinguish what needs to be done.

• Each pleasantly parallel process (worker)
checks the list and picks work not yet
completed.

• The trick is to not have two workers do the
same task.

List of Commands

./myprogram –a 100 –z 3023

./myprogram dosomething different

./myprogram

./myprogram –s 100

./myprogram –s 200

./myprogram –s 300

./myprogram –w 400

./myotherporgram

./mythirdprogram

• Commands.txt

List of Commands

#!/bin/bash –login

#PBS –l walltime=00:05:00

#PBS –l nodes=1:ppn=1,feature=gbe

#PBS –t 1-100

cd ${PBS_O_WORKID}

cmd=`tail –n ${PBS_ARRAYID} commands.txt | head –n 1`

echo ${cmd}

${cmd}

qstat –f ${PBS_JOBID}

Files as Semaphores (FAS)

• Use a list of input files as your task list
• Use a list of output files (or fag files) as your

in-progress/complete list
• Rely on the file system to ensure that no two

jobs are selected at the same time (not a great
assumption but it works)

Simple FAS
#!/bin/bash –login

#PBS –l walltime=00:05:00

#PBS –l nodes=1:ppn=1,feature=gbe

#PBS –t 1-100

cd ${PBS_O_WORKID}

sleep $((${RANDOM} % 100))

for file in *.in; do

 output=“./${file%.*}.out”

 if [! –f ${output}]; then

 touch ${output}

 ./myprogram ${file} > ${output}

 qsub –t 0 –N ${PBS_JOBNAME} ${0}

 exit 0

 fi

done

Loosely Coupled
T

im
e

Tightly Coupled
T

im
e

Shared Memory
Parallelization

Shared Memory

• Different threads (cores, processes)
communicate though pointers to the same
memory location

• Problems can occur if different threads write
the same memory at the same time

• Flags (also called locks and/or semaphores)
are used to allow only one thread to access
memory at the same time

Shared Memory Communication

• Cores on a
processor share
the same
memory

• OpenMP
• Fat nodes

– 96 cores
– 6TB of memory

Intel10

• 8 cores
• 24 GB memory

Large Memory Example

• 32 cores
• 256 GB memory

• We also have nodes with up to 64 cores and
2TB of memory

NUMA

Shared memory submission scripts

• Typically one node with multiple
processors per node (ppn)
– #PBS –l nodes=1:ppn=8

• Different programs use different
methods to tell them how many
processors to use
– Command line arguments
– Environment variables

Example: shared memory Script

• Bowtie uses shared memory parallelization
• Get the bowtie example

>getexample bowtie

• Change to the bowtie directory
>cd ./bowtie

• Look at the submission script
>less ./bowtie.qsub

• Run the job
>qsub bowtie.qsub

OpenMP

• Common Shared Memory parallelizaiton
• Single program runs in many threads
• Really easy to pick loops that are parallel and

split them into multi threads
• Minor modifications to code that can be

writen not to affect single

OpenMP is easy

#include <omp.h>

...

#pragma omp parallel for

for (i=0;i<100;++i) {

A(I) = A(I) + B

}

...

Compile OpenMP Jobs

• Use compiler option fopenmpi.
– fopenmp

• Example:

gcc –fopenmp mycode.cc –o
mycode

simpleOMP.qsub example

#!/bin/bash –login

#PBS –l walltime=00:01:00

#PBS –l nodes=1:ppn=5,feature=gbe

cd ${PBS_O_WORKDIR}

export OMP_NUM_THREADS=${PBS_NUM_PPN}

./simpleOMP

qstat –f ${PBS_JOBID}

Try another getexample

getexample helloOpenMP
getexample OpenMP_profiling

Shared Network
Parallelization

MPI on HPCC

• Two Flavors of MPI
• Switching favors and compiling
• Running in a script
• Running on the developer nodes

MPI program (1 of 4)

/* Needed for printf'ing */
#include <stdio.h>
#include <stdlib.h>

/* Get the MPI header file */
#include <mpi.h>

/* Max number of nodes to test */
#define max_nodes 264

/* Largest hostname string hostnames */
#define str_length 50

MPI program (2 of 4)

int main(int argc, char **argv)

{

 /* Declare variables */

 int proc, rank, size, namelen;

 int ids[max_nodes];

 char hostname[str_length][max_nodes];

 char p_name[str_length];

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Get_processor_name(p_name,&namelen);

MPI program (3 of 4)

if (rank==0) {

 printf("Hello From: %s I am the receiving processor
%d of %d\n",p_name, rank+1, size);

 for (proc=1;proc<size;proc++) {

 MPI_Recv(&hostname[0][proc], \\

 str_length,MPI_INT,proc, \\

 1,MPI_COMM_WORLD,&status);

 MPI_Recv(&ids[proc], \\

 str_length,MPI_INT,proc, \\

 2,MPI_COMM_WORLD,&status);

 printf("Hello From: %-20s I am processor %d of
%d\n",&hostname[0][proc], ids[proc]+1, size);

 }

MPI program (4 of 4)

} else { // NOT Rank 0
 srand(rank);
 int t = rand()%10+1;
 sleep(t);
 MPI_Send(&p_name,str_length, \\
 MPI_INT,0,1,MPI_COMM_WORLD);
 MPI_Send(&rank,str_length, \\
 MPI_INT,0,2,MPI_COMM_WORLD);
 }
 MPI_Finalize();

 return(0);
}

Two Flavors of MPI

• mvapich vs openmpi (default)
• Historically mvapich was much faster that

openmpi
• The newest version of openmpi is just as fast

as mvapich
• I feel that openmpi is much easier to use, but

either will work on HPCC

Switching Flavors

• Use the “module” command to switch
between the two versions of mpi

• Openmpi module is loaded by default
• To switch to mvapich you first need to

unload openmpi:
> module unload OpenMPI

• Then you need to load mvapich:
> module load MVAPICH

• You can do both commands in one step
by using swap:
> module swap OpenMPI MVAPICH

MPI Submission Scripts

#!/bin/bash –login

#PBS –l nodes=10:ppn=1

cd ${PBS_O_WORKDIR}

mpirun <program_name>

#!/bin/bash –login

#PBS –l nodes=10:ppn=1

cd ${PBS_O_WORKDIR}

module swap OpenMPI MVAPICH

mpiexec <program_name>

openmpi

mvapich

Trying out an example

1. Log on to one of the developer nodes
2. Load the powertools module:

> module load powertools

1. Run the getexample program. This will
create a folder called helloMPI:

> getexample helloMPI

1. Change to the helloMPI directory and
read the readme files

2. Or just type the following on the
command line:

> ./README

Testing MPI jobs on dev node

• Use mpirun instead of mpiexec
• Need a hostfile

> echo $HOST >> ./hostfile
> echo $HOST >> ./hostfile
> echo $HOST >> ./hostfile
> echo $HOST >> ./hostfile

• MPIRUN example:
> mpirun –np 4 –hostfile ./hostfile helloMPI

Running on the Command Line

• The scheduler automatically knows how many
and where to run MPI processes.

• However, on the command line, you need to
specify the nodes and processors.

• openmpi and mvapich are a litle different.

Command Line Differences

• Openmpi
– mpirun
– Default assumes one

process on the current
host.

– You do not even need
the mpirun command
to run the default.

– Optionally you can use
the –n and –hostfile
options to change the
default

• mvapich
– mpirun
– Requires both the –np

and –machinefile flag
to run.

Command line

• mvapich

• openmpi

• NOTE: I did a check and either MPI
implementation will work with either
notation.

mpirun -np 4 -machinefile machinefile <program_name>

mpirun -n 4 –hostfile machinefile <program_name>

Which MPI command do you use?

Command Line Job Script

openmpi mpirun mpirun

mvapich mpirun mpiexec

Accelerator Cards

GPU

• Cards used to render
graphics on a
computer

• Hundreds of cores
• Not very smart cores
• But, if you can make

your research look
like graphics
rendering you may
be able to run really
fast!

Running on the GPU

• Program Starts on the CPU
– Copy data to GPU (slow-ish)
– Run kernel threads on GPU (very fast)
– Copy results back to CPU (slow-ish)

• There are a lot of clever ways to fully utilize
both the GPU and CPU.

Pros and Cons

• Benefits
– Lots of processing

cores.
– Works with the CPU as

a co-processor
– Very fast local memory

bandwidth
– Large online

community of
developers

• Drawbacks
– Can be difficult to

program.
– Memory Transfers

between GPU and
CPU are costly (time).

– Cores typically run the
same code.

– Errors are not detected
(on older cards)

– Double precision
calculations are slow
(On older cards)

CUDA program (1 of 5)
#include "cuda.h"
#include <iostream>

using namespace std;

void printGrid(float an_array[16][16]) {
 for (int i = 0; i < 16; i++){
 for (int j = 0; j < 16; j++) {
 cout << an_array[i][j];
 }
 cout << endl;
 }
}

CUDA program (2 of 5)
__global__ void theKernel(float * our_array)

{

 // This is array flattening,

 //(Array Width * Y Index + X Index)

 our_array[(gridDim.x * blockDim.x) * \\

 (blockIdx.y * blockDim.y + threadIdx.y) + \\

 (blockIdx.x * blockDim.x + threadIdx.x)] = \\

 = 5;

}

CUDA program (3 of 5)
int main()

{

 float our_array[16][16];

 for (int i = 0; i < 16; i++) {

 for (int j = 0; j < 16; j++) {

 our_array[i][j] = 0;

 }

 }

CUDA program (4 of 5)
 //STEP 1: ALLOCATE

 float * our_array_d;

 int size = sizeof(float)*256;

 cudaMalloc((void **) &our_array_d, size);

 //STEP 2: TRANSFER

 cudaMemcpy(our_array_d, our_array, size, \\

 cudaMemcpyHostToDevice);

CUDA program (5 of 5)
 //STEP 3: SET UP
 dim3 blockSize(8,8,1);
 dim3 gridSize(2,2,1);

 //STEP 4: RUN
 theKernel<<<gridSize, blockSize>>>(our_array_d);

 //STEP 5: TRANSFER
 printGrid(our_array);
 cudaMemcpy(our_array, our_array_d, size, \\
 cudaMemcpyDeviceToHost);
 cout << "--------------------" << endl;
 printGrid(our_array);

}

Compile CUDA Jobs

• Just like MPI, to compile an cuda
program you need to use the cuda
compiler wrappers:
– nvcc simple.cu -o simple_cuda

Try a cuda getexample

getexample cuda
getexample cuda_clock
getexample cuda_hybrid
getexample NAMD_CUDA_example

Intel Xeon Phi

• Cross between CPU and GPU
• About 61 Pentium III cores

– Less cores/slower than GPU
– Easier to use than GP

• MPI
• OPenMP

Try a Phi Card example

getexample MIC_examples
getexample MKL_mic

Standard Libraries

Standard Libraries

• When possible take advantage of
parallel libraries
– Easy to use
– Saves time
– Takes care of the parallel coding for you
– Tested and vetted by the community

Math Kernel Library

• getexample MKL_benchmark
• getexample MKL_c_eigenvalues
• getexample MKL_Example
• getexample MKL_mic
• getexample MKL_parallel

Other Libraries

• Fftw
• BLAS
• ACML
• BLAS (Basic Linar Algibra
• Lapak
• trilinos
• petci
• Magma
• Cudatools
• Mumps

Which approach is the best?

• Depends on what you are doing?
• Depends on how much communication you

need.
• Depends on what hardware you have.
• Depends on how much time you have.

My Recommendations

• Pleasantly Parallel
• Standard Libraries
• OpenMP
• OpenACC
• OpenMP on Phi
• MPI
• MPI on Phi?
• GPGPU

EASY

Hard

Agenda

• Overview
• Advanced System Description
• Powertools
• Doing more faster

– Pleasantly Parallel, Shared Memory, Shared Network,
Accelerators, Standard Libraries

• Tricks and tips

Tips and Tricks
Going beyond system Limits

• Going beyond system Limits
– More than 520 jobs
– Jobs longer than 1 week
– Taking advantage of more nodes

Finding more Nodes

• Owners are guaranteed access to their
buy-in node within 4 hours. If they are not
using the node, others can use it:
• #PBS –l walltime=04:00:00

• Some of the nodes do not have Infiniband.
If you are not using scratch and do not
need between node communication you
can access these nodes:
– #PBS feature=gbe

Checkpoint / Restart

• What?
– Save the state of your program
– Restart your program from the saved point

• How?
– Design into your program
– BLCR (Berkley Lab Checkpoint Restart)
– Condor Checkpoint Restart
– Others

• Why?
– Robust jobs

• As HPC scales … hardware failures are guaranteed
– Longer jobs
– Better science

Getting Help

• Documentation and User Manual – wiki.hpcc.msu.edu
• Contact HPCC and iCER Staff for:

– Reporting System Problems
– HPC Program writing/debugging Consultation
– Help with HPC grant writing
– System Requests
– Other General Questions

• Primary form of contact - htp://contact.icer.msu.edu/
• HPCC Request tracking system – rt.hpcc.msu.edu
• HPCC Phone – (517) 353-9309
• HPCC Office – 1400 PBS
• Open Office Hours – 1pm Monday (BPS 1440)

http://wiki.hpcc.msu.edu/
http://contact.icer.msu.edu/
http://rt.hpcc.msu.edu/

	Making Your Research Go Faster: Advanced HPCC CI-Days October 23, 2014
	Agenda
	Assumptions
	How this workshop works
	Red and Green Flags
	Submission Scripts
	Slide 7
	What problems are we solving?
	Simulations
	Data Analysis
	Search
	HPC Systems
	Free Access to software
	General Purpose Clusters
	Commodity Cluster
	Buy-In Opportunities
	Current Buy-In options (2014)
	Large Shared Memory Systems (Fat Nodes)
	Shared Memory Communication
	Accelerated Systems
	GPU
	Intel Xeon Phi
	High Throughput HTCondor Cluster
	MSU HTCondor Cluster
	Slide 25
	What are Powertools
	How to Access Powertools
	Common Powertools
	More Common Powertools
	Even More Powertools
	How to turn on powertools as default?
	Slide 32
	What is the Bottleneck
	Steps to parallel code
	Single Thread Jobs
	Pleasantly Parallel
	Loosely Coupled
	PowerPoint Presentation
	Communication
	Slide 40
	Slide 41
	How fast can we go?
	Who are you? -- Biometrics
	Pairwise-All Problem
	943 x 943 Similarity Matrix
	Estimated Calculation Times
	Calculation Time for Full Similarity Matrix
	How do we go even bigger?
	Steps to Pleasantly Parallel
	Pleasantly Parallel Example
	PBS Job Arrays
	Simple Job Array
	Example: Job Arrays
	HPCC Job array limitations
	Job array numbers
	Unrolling Loops
	Simple Unrolled Loop
	Task Queue
	List of Commands
	Slide 60
	Files as Semaphores (FAS)
	Simple FAS
	Slide 63
	Slide 64
	Shared Memory Parallelization
	Shared Memory
	Slide 67
	Intel10
	Large Memory Example
	NUMA
	Shared memory submission scripts
	Example: shared memory Script
	OpenMP
	OpenMP is easy
	Compile OpenMP Jobs
	simpleOMP.qsub example
	Try another getexample
	Shared Network Parallelization
	MPI on HPCC
	MPI program (1 of 4)
	MPI program (2 of 4)
	MPI program (3 of 4)
	MPI program (4 of 4)
	Two Flavors of MPI
	Switching Flavors
	MPI Submission Scripts
	Trying out an example
	Testing MPI jobs on dev node
	Running on the Command Line
	Command Line Differences
	Command line
	Which MPI command do you use?
	Accelerator Cards
	Slide 94
	Running on the GPU
	Pros and Cons
	CUDA program (1 of 5)
	CUDA program (2 of 5)
	CUDA program (3 of 5)
	CUDA program (4 of 5)
	CUDA program (5 of 5)
	Compile CUDA Jobs
	Try a cuda getexample
	Slide 104
	Try a Phi Card example
	Standard Libraries
	Slide 107
	Math Kernel Library
	Other Libraries
	Which approach is the best?
	My Recommendations
	Slide 112
	Tips and Tricks Going beyond system Limits
	Slide 114
	Finding more Nodes
	Checkpoint / Restart
	Getting Help

