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Or, an analysis of its place in high-performance computing 



The	Universe	According	to	MD 
•  The	Newtonian	approximaGon	of	chemistry	is	a	
canonizaGon	of	the	way	freshmen	and	sophomore	
students	are	taught	to	think	of	molecules.		

𝑈=∑𝑝∈bond↑▒​𝑘↓𝑝 ​(​𝐿↓𝑐 
− ​𝐿↓0 )↑2   

+∑𝑎∈ang↑▒​𝑘↓𝑎 ​(​𝜃↓𝑎 − ​
𝜃↓0 )↑2   

+∑𝑣∈dihe↑▒​𝑘↓𝑣 cos(​𝑛𝜃↓𝑣 − ​𝜑↓𝑣 )  

+∑𝑖,𝑗↑▒[​​​𝑘↓𝑐 𝑞↓𝑖 ​𝑞↓𝑗 /​𝑟↓𝑖𝑗  − ​4​𝜖↓𝑖𝑗 (​​𝜎↓𝑖𝑗 /​
𝑟↓𝑖𝑗  )↑6 + ​4​𝜖↓𝑖𝑗 (​​𝜎↓𝑖𝑗 /​𝑟↓𝑖𝑗  )↑12 ]  



Building	on	a	remarkable	success 
•  The	Cornell	charge	set	(parm94,	Amber	ff95)	has	
been	passed	down	through	a	long	lineage:	ff99,	
ff99SB,	ff99SB-ILDN,	ff14SB.	

•  Much	faster	computers	enable	QM	calculaGons	
vastly	more	sophisGcated	than	HF/6-31G*.	

•  Hydrogen	steric	models	have	changed	since	1994.		A	
great	deal	more	effort,	in	aggregate,	has	gone	
toward	modifying	torsions	than	any	other	aspect	of	
the	Amber	force	field.	

•  ElectrostaGcs	are	perhaps	the	most	physically	
meaningful	parameters	in	the	force	field,	and	are	
easy	to	derive	in	an	automated	fashion.	



 

 

“Hartree-Fock calculations in vacuum yield more 
polarized charges than many post Hartree-Fock 

methods, making these charges suitable for condensed-
phase calculations.”  

– Everyone who develops such charge sets 
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“If once you start down the dark path, forever will it 
dominate your destiny.”  

– Yoda 

 

Building	on	a	remarkable	success 
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•  Scheme	(I)	is	pre_y	hard.		Scheme	(II)	is	only	
relevant	in	a	vacuum.		Scheme	(III)	is	wrong.	
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•  Scheme	(IV)	is,	again,	wrong.	(V)	is,	again,	hard	if	
performed	with	post	Hartree-Fock	methods.	
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What	viable	alternaGve	is	leb? 
•  Back to scheme (II).  It’s incomplete, but it’s 

straightforward and not yet wrong. 
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And we can get 
close to Scheme 
(V), if our MM 
electrostatics can 
capture the 
polarization 
energy penalty.  



A	new	charge	model:	IPolQ 
•  The target potential is an average of two MP2 / cc-pvTZ 

calculations:  
•  The molecular conformation in vacuum, and… 

•  In a reaction field due to a bath of TIP4P-Ew water 

•  The fitting cycle is iterative 

 



A	New	Steric	Repulsion	set 
Charged Side 
Chain Analogs 

Uncharged Side 
Chain Analogs 

•  In order to bring hydration free energies of side 
chain analogs into agreement with experiment, 
Lennard-Jones parameters of five polar heavy 
atom types were adjusted. 



Two	charge	sets	in	one:	Extended	REsP 

= 
= 

A REsP-like 
system of 
equations 

Extended REsP 

Restraints holding 
each perturbation 
charge to zero 

Charge 
perturbations 

Fitted 
charges 

Restraints to 
hold charges 
to particular 
values 

Target potentials 
in a new 
environment 

Target 
potentials 
in vacuum 



Let	the	Model	Drive 
•  A	model	may	fit	its	training	data	and	an	independently	

generated	test	set.		But	what	will	it	produce	if	allowed	to	
drive	energy	minimizaGons?	

•  Any	molecular	model	will	make	compromises	against	its	
benchmark,	over-	and	under-esGmaGng	the	energy	in	
different	regions.		In	actual	simulaGons,	the	trend	is	always	
toward	structures	that	are	scored	too	favorably.		



Show	the	Model	its	Mistakes 
•  SomeGmes	the	errors	are	very	pronounced.		In	those	cases,	

re-introducing	the	results	of	model-guided	structure	
opGmizaGons	back	into	the	training	set	produces	a	much	
more	reliable	model.	

•  In	the	case	of	Lysine	dipepGde	(above),	new	mistakes	are	
evidently	found	in	the	second	generaGon,	but	the	model	
appears	to	be	fixed	by	the	third.	



ff14ipq:	The	first	IPolQ	protein	model 
•  First,	let’s	look	at	the	backbone	behavior:	

ϕ 

φ φ 

Ramachandran	 ff14ipq	

•  The	first	generaGon	of	ff14ipq	(soluGon	phase	
charges	paired	with	vacuum	phase	torsions)	puts	all	
of	the	minima	in	the	right	places.	



ff14ipq:	The	first	IPolQ	protein	model 
•  Subsequent	generaGons	refine	the	Alanine	
dipepGde	PMF:	

Amber ff14ipq, Generation 1 

Ψ 

φ 

Generation 1: 
-  28,000 MP2 energies 
-  Amino acid 

dipeptides, 
tripeptides, and 
tetrapeptides 

-  Among the largest 
data sets as of early 
2013 



ff14ipq:	The	first	IPolQ	protein	model 
•  Subsequent	generaGons	refine	the	Alanine	
dipepGde	PMF:	

Amber ff14ipq, Generation 3 

Ψ 

φ 

Generation 3: 
-  65,000 MP2 

energies 
-  Force-field 

optimized  results of 
generations 1 and 2 

-  Artificially low 
minima were also 
eliminated in many 
amino acids 



Protein	simulaGons	and	stability	mature 
•  What	appear	to	be	interest	excursions	may	just	be	
incomplete	models.	



Stability,	but	too	much? 
•  β-sheets	are	too	stable;	in	K19,	lysine	head	groups	
contact	the	backbone	too	much.	

GB1 Hairpin, 300K K19 Helix, 277K 



ff14ipq:	What	was	the	problem? 
•  The	salt	bridges	are	too	stable:	it	seems	that	our	polar	
atom	Lennard	Jones	meddling	did	this.	

•  The	over-stabilizaGons	tend	to	be	on	the	order	of	1	
kcal/mol,	similar	to	an	esGmate	in	the	ff14ipq	paper.	



ff15ipq:	The	next	IPolQ	protein	model 
•  Rather	than	make	polar	heavy	atoms	bigger,	focus	on	
the	hydrogens.		Nitrogens	are	central	to	the	problems	
in	hydraGon	free	energies.	

•  Introduce	angle	fi:ng	alongside	dihedrals.		This	helps	
relieve	a	lot	of	strain	that	would	otherwise	spill	over	
into	fi_ed	torsion	parameters.	

ff14ipq: Bigger 
polar heavy atoms 

ff15ipq: Bigger 
polar hydrogens 



How	effecGve	is	angle	fi:ng? 

Ala(5)	Scores	 K19	
(α-helix)	

GB1	
(β-hairpin)	Orig	 DFT1	 DFT2	 KLL	

ff14ipq	 1.3	 2.6	 1.5	 1.4	 Metastable	at	277K	 Completely	stable	
at	300K	

Change	polar	H	Lennard-Jones	radius	to	1.5Å,	refit	torsions	

ff15ipq-05	 1.5	 2.5	 1.5	 1.5	 Unstable	 Completely	stable	

Add	N-CA-C,	CA-C-N,	and	C-N-CA	for	neutral,	Glycine,	(+)	and	(-)	residues	

ff15ipq-06	 0.7	 2.0	 0.8	 0.7	 Unstable	 Unstable	

Decrease	polar	H	Lennard-Jones	radius	to	1.3Å	

ff15ipq-08	 0.7	 2.3	 1.0	 0.7	 Too	stable	at	275K,	
begins	to	melt	at	315K	 Unstable	

Add	CA-N-H,	CA-C=O	for	neutral,	Glycine,	(+)	and	(-)	residues	

ff15ipq-09	 0.6	 2.7	 1.0	 0.7	
Metastable	at	

275-285K,	300-325K	
t.b.d	

Melts	at	300K	



How	far	does	automaGon	go? 
•  Automated	parameter	creaGon	is	bound	to	hit	a	wall:	
even	if	QM	were	perfect	our	ability	to	mimic	it	is	not.	

Difference	in	QM	Methods,	
U(DFT)	–	U(MP2)	

+1:	 	Destabilized		
	relaGve	to	QM	

Error,	
U(Tinker	Toy)	–	U(MP2)	

φ	 φ	

ϕ	

α-Helix	

β-Sheet	

-1:				Favored	
					relaGve	to	QM	

Poly-Proline	II	



ElectrostaGc	potenGal	fi:ng	
•  The	nuclear	charges	fit	the	quantum	target	with	
many	compromises	
	



A	force	field	is	but	a	means	to	an	end 
•  The	fav8	pepGde	was	engineered	to	study	aromaGc	
stacking	between	helicies	in	proteins.		The	pepGde	
crystallizes	with	all	solvent	(water)	accounted	for	in	
the	unit	cell.	

•  With	the	GPU-based	pmemd	code,	this	small	
system	was	simulated	for	nearly	10	μs	(10	billion	
Gme	steps).	



A	force	field	is	but	a	means	to	an	end 
•  The	simulated	water	density	reproduces	the	natural	
electron	density,	not	just	the	refined	water	posiGons	
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n 

X
-ray structure 



MD	as	a	Consumer	of	HPC 
•  Unmistakable	choke	points	on	the	path	between	
parameter	development	and	biochemical	simulaGon:	

Create	
Training	Data	 Fit	Model	
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