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The Universe According to MD

e The Newtonian approximation of chemistry is a
canonization of the way freshmen and sophomore
students are taught to think of molecules.
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Building on a remarkable success

e The Cornell charge set (parm94, Amber ff95) has
been passed down through a long lineage: ff99,
ff99SB, ff99SB-ILDN, ff14SB.

e Much faster computers enable QM calculations
vastly more sophisticated than HF/6-31G*.

e Hydrogen steric models have changed since 1994. A
great deal more effort, in aggregate, has gone
toward modifying torsions than any other aspect of
the Amber force field.

e Electrostatics are perhaps the most physically

meaningful parameters in the force field, and are
easy to derive in an automated fashion.
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Building on a remarkable success

* Hartree-Fock calculations in vacuum yield more
polarized charges than many post Hartree-Fock
methods, making these charges suitable for condensed-
phase calculations.”

— Everyone who develops such charge sets




Building on a remarkable success

* Hartree-Fock calculations in vacuum yield more
polarized charges than many post Hartree-Fock
methods, making these charges suitable for condensed-
phase calculations.”

— Everyone who develops such charge sets

“If once you start down the dark path, forever will it
dominate your destiny.”
— Yoda




How did this go subtly wrong?

e Scheme (l) is pretty hard. Scheme (ll) is only
relevant in a vacuum. Scheme (lll) is wrong.
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How did this go subtly wrong?

e Scheme (V) is, again, wrong. (V) is, again, hard if
performed with post Hartree-Fock methods.
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What viable alternative is left?
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e Back to scheme (Il). It's incomplete, but it’s
straightforward and not yet wrong.
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A new charge model: IPolQ

 The target potential is an average of two MP2 / cc-pvTZ
calculations:

 The molecular conformation in vacuum, and...
 |n areaction field due to a bath of TIP4P-Ew water

Initial guess for
solute charge
distribution

Update to Lennard
Jones parameters ‘
Molecular simulations
to obtain solvent
reaction field potential

Thermodynamic Quantum calculations
Integration to obtain to obtain solute
Hydration free energy electrostatic potential

REsP fit to obtain
new solute

\ charge distribution




J¢ A New Steric Repulsion set
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* |In order to bring hydration free energies of side
chain analogs into agreement with experiment,
Lennard-Jones parameters of five polar heavy
atom types were adjusted.



Two charge sets in one: Extended REsP

Fitted H
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- Target
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Let the Model Drive

e A model may fit its training data and an independently
generated test set. But what will it produce if allowed to
drive energy minimizations?
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e Any molecular model will make compromises against its
benchmark, over- and under-estimating the energy in
different regions. In actual simulations, the trend is always
toward structures that are scored too favorably.




Show the Model its Mistakes

e Sometimes the errors are very pronounced. In those cases,
re-introducing the results of model-guided structure
optimizations back into the training set produces a much
more reliable model.
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e In the case of Lysine dipeptide (above), new mistakes are
evidently found in the second generation, but the model
appears to be fixed by the third.




ff14ipq: The first IPolQ protein model

e First, let’s look at the backbone behavior:
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1 o The first generation of ff14ipq (solution phase
| charges paired with vacuum phase torsions) puts all
of the minima in the right places.




ff14ipq: The first IPolQ protein model

e Subsequent generations refine the Alanine
dipeptide PMF:
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ff14ipq: The first IPolQ protein model

e Subsequent generations refine the Alanine
dipeptide PMF:

Generation 3:

- 65,000 MP2
energies

- Force-field
optimized results of
generations 1 and 2

- Atrtificially low
minima were also .
eliminated in many b 5
amino acids
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Protein simulations and stability mature

e What appear to be interest excursions may just be
incomplete models. T
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Stability, but too much?

e (B-sheets are too stable; in K19, lysine head groups
contact the backbone too much.
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ff1dipqg: What was the problem?

atom Lennard Jones meddling did th
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e The over-stabilizations tend to be on the order of 1
‘ kcal/mol, similar to an estimate in the ff14ipq paper.



ff15ipg: The next IPolQ protein model

e Rather than make polar heavy atoms bigger, focus on
the hydrogens. Nitrogens are central to the problems
in hydration free energies.
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ff15ipq: Bigger
polar hydrogens

ff14ipq: Bigger
polar heavy atoms

| ® Introduce angle fitting alongside dihedrals. This helps
relieve a lot of strain that would otherwise spill over
into fitted torsion parameters.




How effective is angle fitting?

Ala(5) Scores K19 GB1
DFT1 | DET2 (a-helix) (B-hairpin)

Completely stable
at 300K

Change polar H Lennard-Jones radius to 1.5A, refit torsions

ff15ipg-05 Unstable Completely stable

Add N-CA-C, CA-C-N, and C-N-CA for neutral, Glycine, (+) and (-) residues

2.6 1.5 . Metastable at 277K
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How far does automation go?

e Automated parameter creation is bound to hit a wall:
even if QM were perfect our ability to mimic it is not.

B-Sheet Poly-Proline

: Destabilized
relative to QM
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Electrostatic potential fitting

e The nuclear charges fit the quantum target with
many compromises

Hydroxyl
Ser Hydroxyl —Thr agside-chain

side-chain




A force field is but a means to an end

e The fav8 peptide was engineered to study aromatic
stacking between helicies in proteins. The peptide

crystallizes with all solvent (water) accounted for in
the unit cell.

e With the GPU-based pmemd code, this small

system was simulated for nearly 10 us (10 billion
time steps).



A force field is but a means to an end

e The simulated water density reproduces the natural
electron density, not just the refined water positions

Simulation
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MD as a Consumer of HPC

e Unmistakable choke points on the path between
parameter development and biochemical simulation:

Run

Simulations

Analyze

Create : : ]
Fit Model Simulations

Training Data

Computing Process

Cost, Log(Time)

Analyze
Simulations

Run
Simulations

Create :
Training Data RiRlldetes

‘ Human Process
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