Introduction to HPC at MSU

CYBERINFRASTRUCTURE DAYS 2014 Oct/23/2014

Yongjun Choi choiyj@msu.edu Research Specialist, Institute for Cyber-Enabled Research

Agenda

- Introduction to HPCC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

How this workshop works

- We are going to cover some basics.
 - Lots of hands on examples
- Exercises are denoted by the following icon in this presents:

Green and Red Sticky

- Use the provides sticky notes to help me help you.
 - No Sticky = I am working
 - Green = I am done and ready to move on (yea!)
 - **Red** = I am stuck and need more time and/or some help

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

- What does iCER stand for?
 - Institute for Cyber-Enabled Research
- Mission
 - Reducing the "Mean time to Science"
 - iCER's mission to help researchers with computational components of their research

iCER Overview

- iCER is a research unit at MSU. We:
 - Maintain the university supercomputer
 - provide "software-as-a-service"
 - Organize Training
 - Provide 1-on-1 consulting
 - Help with grant proposal

Funding From...

- The Vice President office for Research and Graduate Studies (VPRGS)
- Engineering College, College of Natural Science
 and College of Social Science
- This allows us to provides services and resources for
 FREE!!!

Online Resources

- icer.msu.edu: iCER Home
 - hpcc.msu.edu: HPCC Home
- wiki.hpcc.msu.edu: HPCC User Wiki

When would I use the HPC?

- Takes too long for computation
- Runs out of memory
- Needs licensed software
- Needs advanced interface (visualization/database)
- Read/write Lots of data

What is a supercomputer?

What is a supercomputer?

- A computer at the frontline of contemporary processing capacity
- Introduced in 1960s, Seymour Cray
- MSU's supercomputer is a "collection" of computers that feature:
 - High FLOPS (Floating Point Operations/Second)
 - Fast Network
 - Fast/Reliable File Services

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Accounts

- Pls can request accounts (for each group member) at <u>http://contact.icer.msu.edu/account</u>
- Each account has access to:
 - 50 GB of replicated file space (/mnt/home/userid)
 - 520 processing cores
 - 360 TB of high-speed scratch space (/mnt/scratch/userid)
- Also available: shared group folder upon request

• Our supercomputer is a "remote service"

© Can Stock Photo - csp0072636

http://wiki.hpcc.msu.edu/x/DYAf

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Connecting to the HPCC using ssh

- Windows: we have "putty" pre-installed on iCER thumb drive.
 - Insert the thumb drive
 - Open appropriate folder
 - StartPortableApps.exe
 - Locate putty in the menu
 - double click on spcc default connection
 - Username=your netid; password = your netid password
- OSX:
 - Access spotlight from its menu bar icon (or **# SPACE**)
 - Type terminal

– In terminal, type: ssh <u>netid@gateway.hpcc.msu.edu</u> <u>MICHIGAN STATE</u> UNIVERSITY

Connecting to the HPCC using ssh

UNIVERSITY

Types of Nodes

gateway.hpcc.msu.edu

DEVELOPER NODES

© Can Stock Photo - csp0072636

COMPUTE NODES

Gateway Nodes

- Shared: accessible by anyone with an MSU-HPCC account.
- Shared resource -- hundreds of users on the gateway nodes
- Only means of accessing HPCC compute resources.
- Useful information (status, file space, messages)
- ** DO NOT RUN ANYTHING ON THESE NODES! **

Developer/eval nodes

- Shared: accessible by anyone with an MSU-HPCC account
- Meant for testing / short jobs.
- Currently, up to 2 hours of CPU time
- Development nodes are "identical" to compute nodes in the cluster
- Evaluation nodes are "unique" nodes
- Node name descriptive (name= feature, #=year)
- <u>http://wiki.hpcc.msu.edu/x/pwNe</u>

Compute Nodes

- Dedicated: you request # cores, memory, walltime. (also for advanced users: accelerators, temporary file space, licenses)
- Queuing system: when those resources are available for your job, those resources are assigned to you.
- Two modes
 - batch mode: generate a script that runs a series of commands
 - Interactive mode

What is a Shell?

- A command interpreter that turns text into instructions
 - Text can be entered interactively in the command line
 - Text can be contained within a file
- On the HPCC, default shell is called BASH (aka Borne-Again shell)
- Note: use "bash" as search parameter in google!

- If you're not connected to the HPCC, please do so now.
- From gateway, please connect to a development node

ssh dev-intel10

 ssh == secure shell (allows you to securely connect to other computers)

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Basic navigation commands: Is

Command	Meaning
---------	---------

- **1s** list files and directories
- Some options for **ls** command
- -a list all files and directories
- **-F** append indicator (one of */=@|) to entries
- -h print sizes in human readable format (e.g., 1k, 2.5M, 3.1G)
- -1 list with a long listing format
- -t sort by modification time

Basic navigation commands: cd

Command	Meaning
cd directory_name	change to named directory
cd	change to home-directory
cd ~	change to home-directory
cd	change to parent directory
cd -	change to the previous directory
pwd	display the path of the current directory

Basic Commands

- To find a command, use a search engine
- Complete options/instructions for that command man command_name
- An exhaustive list

http://ss64.com/bash/

- A useful cheatsheet
 <u>http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/</u>
- Explain a command given to you http://explainshell.com/

MICHIGAN STATE UNIVERSITY

 Please type (in your terminal): module load powertools getexample intro_workshop

•This will copy some example files (for this workshop) to your directory.

•Exercise: try to find the file '**youfoundit.txt**' in the '**'hidden**'' directory.

(Advanced Tip)

- Tab Completion short cut
 - Typing out directory/file/program names is time consuming.
 - When you start typing out the name, hit tab key. The shell will try to fill in the rest of the directory name
 - E.g., return to home directory

cd

type **cd I**, then press tab

(Advanced tip 2)

- Access previous command by pressing up arrows
- See full history by typing history
- Repeat previous command in history by using the exclamation sign, e.g.
 [choiyj@dev-intel10] % history

8 ls -lat

MICHIGAN STATE

IVERSITY

. . .

• 18 will call the command "Is -lat"

Practicing navigation again...

- Navigate to the data/ directory
- Use the "tab completion" feature
- Try to find the name and size of the file in that directory.

Examining Files

- Print all contents of a file using cat cat filename
- When the file is really big, use "less"

less filename

- Use arrow keys to scroll by line
- Space to go to the next page
- "b" to go backwards
- "g" to go to the beginning
- "G" to go to the end
- "q" to quit

Basic manipulation commands

UNIVERSITY

Command	Meaning
cp <from> <to></to></from>	Copy files
cp -r <from> <to></to></from>	Copy recursively: files and directories
mkdir directory	Make named directory
mv <from> <to></to></from>	Move a file (can be used as a rename command!)
rm filename	Remove the file
rmdir directory	Remove an empty directory
rm -r directory	Remove a directory recursively (i.e. include all subdirs and files)
MICHIGAN STATE	

ICE

Short Exercise

- 1. Rename the **.hidden** directory to **not_hidden**
- 2. Create a new directory called new
- 3. Copy the file **youfoundit.txt** into the new directory

Creating / Editing text files

- You "could" create/edit files on your local system and transfer them using filezilla
 - Downside: slow
 - Need to run command "dos2unix" if you are running a windows system
- Much "faster" in the long term to learn how to edit files in the command line

Editors

- Choice of editor is really a religion
 - emacs (popular, powerful)
 - vi / vim/ gvim (popular, powerful)
 - Nano (simple, easy to learn)
- Today, we will learn nano. To start, type

nano newfile.txt

- Commands are in the bottom. (A means control key)
- Create a file that says: this is a text file!

Nano

- Nano does not leave any output on the screen after it exists.
- But *Is* now shows that we have a new file called *newfile*
- Lets tidy up by deleting this new file:
 rm newfile

** NOTE: no undelete in Linux (unlike windows)

Other useful commands

- **wget** (get something from the www) wget http://...
- **ps** (get processes, i.e. running programs)
- top (get cpu/memory utilization)
- find (a way to locate files)
- grep (search for patterns)
- wc (get number of words/lines)
- **bc** (bash calculator)

Available Software

- Compilers, debugger,s and profilers
 - Intel compilers, openmp, openmpi, mvapich, totalview, GNU.....
- Libraries
 - ACML, BLAS, FFTW, LaPACK, MKL.....
- Commercial Softwares
 - MATLAB, Mathematica, FLUENT, Abaqus.....
- For a more up to date list, see the documentation wiki:
 - http://wiki.hpcc.msu.edu/

Module System

- To maximize the different types of software and system configurations that are available to the users, HPCC uses a Module system
- Key Commands
 - **module list** : List currently loaded modules
 - module load modulename : Load a module
 - module unload modulename : Unload a module
 - module spider keyword : Search modules for a keyword
 - module show modulename : Show what is changed by a module
 - module purge : Unload all modules

Short Exercise

- Unload all modules and load these modules
 - GNU, powertools
- Check which modules are loaded
- Several versions of MATLAB are installed on HPC. Find what versions are available on HPC. Load the latest version.

- **Powertools** is a collection of software tools and examples that allows researchers to better utilize High Performance Computing (HPC) systems.
- module load powertools

Useful **Powertools** commands

- getexample : Download user examples
- **powertools** : Display a list of current powertools or a long description
- *licensecheck* : Check software licenses
- **avail** : Show currently available node resources

- For more information, refer to this webpage
- <u>https://wiki.hpcc.msu.edu/x/p4Bn</u>

CHIGAN STATE

VFRSITY

getexample

- If you do not load **powertools**, please do it now:
- Download the *helloworld* example using getexample
- Check what you downloaded. What is the biggest file?

getexample

 You can obtain a lot of examples through getexample. Take advantage of it!

Possible example names:

abagus_example ADMB_example ADMB_example2 affinity allinea_map Amber_CUDA_example Amber_example avida_blcr basic_array_job blast blender_farm BOOST_example bowtie brother_test burn_heat Circuitscape_examples fluentMPI Clang_example

MICHIGAN STATE

cloudy_example condor_advanced condor_basic condor_Python condor_R condor_simple cuda cuda_clock cuda_hybrid CUDA_WORKSHOP_UIUC1208 helloworld DDT_examples econ_examples espresso_benchmark fftw fluent3D fortran_openmp

fortran_openmp_blas makeflow FreeSurfer GAMESS_example gmp_mpfr gromacs Hadoop_wordcount HEEDS_test helloMPI helloOpenMP HFSS_example ImageJ intro_workshop lammps_test LAPACK_example magma_example makefile_example

MATLAB basic MATLAB_blcr MATLAB_compiler MATLAB_compiler2 MATLAB_many_jobs MATLAB_movie MATLAB_parameter_sweep MATLAB_parfor MATLAB_parfor2 MATLAB_patternsearch MIC_examples MKL benchmark MKL_c_eigenvalues MKL_Example MKL_mic MKL_parallel

Molpro_example mothur mothur2 mothur_example MPI_pi multi_variable myhadoop NAMD_CUDA_example NAMD_example Octave_basic OpenACC_example OpenCL_hello_world OpenMP_profiling paraview_basic pbdR_examples pcap_example Python_MPI

qsub_arraydepend R_example R_plot SAS_example simpleMatlab SNPPipeline splitBam STATA_example stata_parallel tbb_example TotalView_MPI_example Valgrind_example VASP_example velvet_blcr XSEDE_MPI_WORKSHOP

Standard in/out/err and piping

- You can redirect the output of a program to a file using ">" character:
- myprogram > output.txt
- You can also cause the output of the program to be the input of another program using the "|" pipe character:
- myprogram | myotherprogram

Redirection and Piping

- Change to the *helloworld* directory
- Redirect the manual of the *Is* command to *Is.txt*:
- Print all content of Is.txt using cat and more using "|" pipe
- Print all content of Is.txt using cat and less using "|" pipe
- Can you see the difference between more and less?

Redirection and Piping

- You can redirect the output of a program to a file using ">>" characters instead of ">":
- Redirect the output of the *ls* command to *ls1.txt* using ">"
- 2. Repeat 1
- 3. Redirect the output of the *Is* command to *Is2.txt* using ">>"
- 4. Repeat 3
- 5. Check the difference between **Is1.txt** and **Is2.txt**

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Transferring Files (SFTP or SCP)

- Windows (iCER thumb drive)
 - Pre-installed filezilla
- OSX
 - download and install filezilla
 - http://filezilla-project.org
- Hostname: gateway.hpcc.msu.edu
- Username: msu netid
- Password: msu netid password
- Port : 22

MICHIGAN STATE

Transferring Files (SFTP or SCP)

LOCAL

SYSTEM

Transferring Files (SFTP or SCP)

- Hostname: <u>gateway.hpcc.msu.edu</u>
- Username: msu netid
- Password: netid password
- Port : 22

Exercise: download this presentation from /mnt/scratch/choiyj/intro_hpcc/intro_hpcc.pdf to your local system

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Running Jobs on the HPC

- The developer (dev) nodes are used to compile, test and debug programs
- Two ways to run jobs
 - submission job scripts
 - interactive way
- Submission scripts are used to run (heavy/many) jobs on the cluster. We will be back here later.

Advantages of running Interactively

- Yo do not need to write a submission script
- Yo do not need to wait in the queue
- You can provide input to and get feedback from your programs as they are running

Disadvantages of running Interactively

- All the resources on developer nodes are shared between all uses
- Any single process is limited to 2 hours of cpu time. If a process runs longer than 2 hours it will be killed.
- Programs that overutilize the resources on a developer node (preventing other to use the system) can be killed without warning.

Developer Nodes

Names	Cores	Memory (GB)	Accelerators	Notes
Dev-intel07	8	8		
dev-gfx10	4	18	2xM1060	Nvidia Graphics Node
dev-intel0	8	24		
dev-intel14	8	64		
dev-intel14-phi	20	128	2xPhi	Xeon Phi Node
dev-intel14-k20	20	128	2xK20	Nvidia Graphics Node

- Most users use the developer nodes for developing their software
- If you are using a makefile you can compile using more processors with the "-j" option
 - make -j8
 - Will compile using 8 core thread

Compilers

- by default we use the GNU compilers. However, lots of other compilers are available including Intel and Portland compilers.
- The module system always sets environment variables such that you can easily test with other compilers.

Compile Code

- change to "helloworld" directory
- run the gcc Compilers:
 gcc -O3 -o hello hello.c
- run the program:./hello

Running in the background

VFRSITY

- You can run a program in the background by typing an "**&**" after the command.
- You can make a program keep running even after you log out of your ssh session by using "nohup command"
- You can run an entire session in the background even if you log in and out of your ssh session by using the "screen" command
- All three of these options are common to linux and tutorials can be found online

CLI: Command Line Interface

• GUI: Graphical User Interface

What is X11?

• Method for running Graphical User Interface (GUI) across a network connection.

What is needed for X11

- X11 server running on your personal computer
- SSH connection with X11 enabled
- Fast network connection
 - Preferably on campus

Graphical User Interface

- X11 Windows: Install Xming from iCER thumb drive
- ssh -X <u>username@hpc.msu.edu</u>
- Turn on x11 forwarding

• Note: Mac Users should use XQuartz

Test GUI using X11

- run X11
- Try one of the following commands xeyes

or/and

firefox

Programs that can use GUI

- MATLAB
- Mathematica
- totalview : C/C++/fortran debugger especially for multiple processors
- DDD (Data Display Debugger) : graphical front-end for command-line debugger
- Etc, etc, and etc

Remote Desktop Client

- RDP allows users to connect to our systems with superior performance relative to X11 forwarding over SSH.
- RDP is available at rdp.hpcc.msu.edu from on campus or via the MSU VPN.
- Windows: Microsoft Remote Desktop
- Mac: Need to install the Microsoft Remote Desktop from the App Store.
- The easiest way to connect to the HPCC via RDP is to download & run this template file: ICER HPCC RDP (<u>https://wiki.hpcc.msu.edu/x/tABZAQ</u>).

Remote Desktop Client

- Run RDP client and connect with the remote desktop client using ICER HPCC RDP template file.
- Open a terminal (Application Menu => Terminal Emulator or click the terminal icon () on the upper left corner)
- Connect to dev-intel10 and run xeyes

Agenda

- Introduction to HPC
 - Introduction to iCER
- How to Use the HPC
 - Get an account
 - Install needed Software (SSH, X11, Xming/XQuartz)
 - Basic navigation commands
 - Transfer files
 - Compile/Test programs on a developer node
 - Write a submission script
 - Submitting a job

Resource Manager and Scheduler

Not First In First Out!!

Scheduler vs. Resource Manger

Scheduler
 (Moab)

MICHIGAN STATE

IVERSITY

- Tracks and assigns
 - Memory
 - CPUs
 - Disk space
 - Software Licenses
 - Power / environment
 - Network

- Hold jobs for execution
- Put the jobs on the nodes
- Monitor the jobs and nodes

Common Commands

- qsub "submission script"
 - Submit a job to the queue
- qdel "job id"
 - Delete a job from the queue
- showq u "user id"
 - Show the current job queue of the user
- checkjob "job id"
 - Check the status of the current job
- showstart -e all "job id"
 - Show the estimated start time of the job

MICHIGAN STATE UNIVERSITY

Submission Script

- List of required resource
- All command line instructions needed to run the computation

Typical Submission Script

MICHIGAN STATE

```
#!/bin/bash -login
#PBS -l walltime=10:00:00,mem=3Gb,nodes=10:ppn=1
#PBS -j oe
cd ${PBS_0_WORKDIR}
./myprogram -my input arguments
qstat -f ${PBS_JOBID}
```


Submit a job

- go to the helloworld directory
 cd ~/helloworld
- Create a simple submission script
 nano hello.qsub
- See next slide to edit the file...

#!/bin/bash -login #PBS -1 walltime=00:01:00 #PBS -1 nodes=1:ppn=1 cd \${PBS O WORKDIR} ./hello qstat -f \${PBS JOBID}

Details about job script

- "#" is normally a comment except
 - "#!" special system commands
 - #!/bin/bash
 - "#PBS" instructions to the scheduler"
 - #PBS -I nodes=1,ppn=1
 - **#PBS -I walltime=hh:mm:ss**
 - **#PBS -1 mem=2gb (!!! Not per core but a whole)**
- <u>http://wiki.hpcc.msu.edu/x/Np-T</u>

Submit a job

 Once job script created, submit the file to the queue

qsub hello.qsub

- Record job id number (######) and wait around 30 seconds
- Check jobs in the queue with:
 qstat –u userid
- Delete a job in a queue:
 qdel jobid
- Status of a job

Monitoring

- Submit the file to the queue:
 qstat -f "jobid"
- When will a job start:
 showstart -e all "jobid"

Scheduling Priorities

- NOT First Comes First Serves!
- Jobs that use more resources get higher priority (because these are hard to schedule)
- Smaller jobs are backfilled to fit in the holes created by the bigger jobs
- Eligible jobs acquire more priority as they sit in the queue
- Jobs can be in three basic states:
 - Blocked, eligible or running

Cluster Resources

UNIVERSITY

	Year	Name	Description	ppn	Memory	Nodes	Total Cores	
	2007	intel07	Quad-core 2.3GHz Intel Xeon E5345	8	8GB	126	1008	
	2009	amd09	Sun Fire X4600 (Fat Node) AMD Opteron 8384	32	256GB	3	96	
	2010	gfx10	NVIDIA CUDA Node (no IB)	8	18GB	32	256	
	2010	intel10	Intel Xeon E5620 (2.40 GHz)	8	24GB	191	1528	
	2011	intel11	Intel Xeon 2.66 GHz E7-8837	32	512GB	2	64	
				32	1TB	1	32	
				64	2ТВ	2	128	
	2014	intel14	Intel Xeon E5-2670 v2 (2.6 GHz)	20	64GB	128	2560	
				20	256GB	24	480	
			2 NVIDIA K20 GPUs	20	128GB	40	800	
			2 Xeon Phi 5110P	20	128GB	28	560	
			Large Memory	48 or 96	1 - 6 TB	5	288	
MIC	MICHIGAN STATE							

Scheduling Tips

- Requesting more resources does not make a job run faster unless you a running a parallel program
- The more resources you request, the "harder" it is for the scheduler to reserve those resources.
- First time: over-estimate how much resources you need, and then modify appropriately.
- (qstat -f \${PBS_JOBID} at the bottom of my scritps will give you resources information when the job is done)

Advanced Scheduling Tips

- Resources
 - A large proportion of the cluster can only run jobs that are four hours or less
 - Most nodes have at least 24 gb of memory
 - Half have at least 64 gb of memory
 - Few have more than 64 gb of memory.
 - Maximum running time of jobs: 7 days (168 hours)
 - Maximum memory that can be requested: 6tb
- Scheduling
 - 10 eligible jobs at a time
 - 512 running jobs

MICHIGAN STATE UNIVERSITY

Job completion

- By default the job will automatically generate two files when it completes:
 - Standard Output:
 - Ex: jobname.o5945571
 - Standard Error:
 - Ex: jobname.e5945571
- You can combine these files if you add the join option in your submission script:
 #PBS -j oe
- You can change the output file name
 #PBS -o /mnt/home/netid/myoutputfile.txt

Other Job Properties

- resources (-I)
 - Walltime, memory, nodes, processor, network, etc.

#PBS -l feature=gpgpu,gbe
#PBS -l nodes=2:ppn=8:gpu=2
#PBS -l mem=16gb

- Email address (-M)
 #PBS –M choiyj@msu.edu
- Email Options (-m)
 #PBS –m abe

Many others, see the wiki: <u>http://wiki.hpcc.msu.edu/</u>

Advanced Environment Variables

- The scheduler adds a number of environment variables that you can use in your script:
 - PBS_JOBID
 - The job number for the current job.
 - PBS_O_WORKDIR
 - The original working directory which the job was submitted
- Example
 mkdir \${PBS_O_WORKDIR}/\${PBS_JOBID}

Softwares (Modules) again

- iCER has over 2500 software titles installed
- Not all titles are available by default
- We use "modules" to setup the software
- Some modules are loaded by default module list
- To see different version:
 module spider MATLAB
- To search, also use the module spider command

Getting Help

- Documentation and User Manual <u>wiki.hpcc.msu.edu</u>
- Contact HPCC and iCER Staff for:
 - Reporting System Problems
 - HPC Program writing/debugging Consultation
 - Help with HPC grant writing
 - System Requests
 - Other General Questions
- Primary form of contact <u>http://contact.icer.msu.edu/</u>
- HPCC Request tracking system <u>rt.hpcc.msu.edu</u>
- HPCC Phone (517) 353-9309
- HPCC Office 1400 PBS
- Open Office Hours 1-2 pm Monday/Thursday (PBS 1440)

MICHIGAN STATE