

Programming with MATLAB

Sean de Wolski Application Engineer

© 2013 The MathWorks, Inc.

Today's Objectives

- Introduce you to programming with MATLAB
 - The MATLAB language
 - Development tools
- Demonstrate the range of programming styles supported
 - Interactive command line, scripts and functions, object-oriented programming
- Show you how to program effectively in MATLAB

Demo: Assessment of Wind Turbine Locations

 Goal: Create analysis to choose best wind turbine location by estimating power generation at multiple locations

Approach:

- Interactively explore data and develop analysis approach
 - Load and preprocess data from observation towers
 - Fit wind speed probability distribution
 - Estimate average power
- Automate to run on data from other locations

dv

Calculating Average Turbine Power

Average Power =
$$\int_{v_{min}}^{v_{max}} f(v) * W(v)$$

f(v) is the wind speed probablity distribution function

W(v) is the turbine power curve (power as a function of wind speed)

Wind Turbine Power Curve

Region I: $v < v_{in}$ W(v) = 0

Region II: $v_{in} < v < v_{rated}$ $W(v) = p_{rated} \left(\frac{v^2 - v_{in}^2}{v_{rated}^2 - v_{in}^2} \right)$

Region III: $v_{rated} < v < v_{out}$ $W(v) = p_{rated}$

Region IV: $v > v_{out}$ W(v) = 0

Demo Summary

Products Used

MATLAB

- MATLAB language
 - High-level
 - Matrix-based
 - No need for low-level administrative tasks
- Math and graphics functions for engineering and science
- Supports a range of programming styles
 - Started working interactively (Command line, plotting)
 - Automated with a script and functions (Editor, command history, comments)

Demo: Virus Dynamics Modeling

 Goal: Modify the code for a working model of virus dynamics to make it more maintainable, reusable, and robust

• Approach:

- Organize code by using different function types
- Add error checking to validate inputs
- Allow different calling syntaxes to support different use cases

Mathematical Model of Virus Dynamics

$$\frac{dT}{dt} = -\beta T V$$

$$\frac{dI}{dt} = \beta T V - \delta I$$

- $\frac{dV}{dt} = p I c V$
- T target (uninfected cells)
- I infected cells
- V- free virions (virus particles)

Model parameters:

- β infection rate of uninfected cells
- $\delta\,$ death rate for infected cells
- p production rate of virus particles
- *c* clearance rate of virus particles

$$R = \frac{p \ \beta \ T_o}{c \delta} \qquad \begin{array}{l} \text{If } \mathsf{R} > 1, \\ \text{infection can} \\ \text{be established.} \end{array}$$

Demo Summary

- Started with working code
- Refined and improved code
 - Maintainable
 - Subfunctions, nested functions
 - Reusable / more general
 - Function with flexible input arguments
 - Robust
 - Error checking and validating inputs
 - Profiler to assess performance
- Used development tools
 - Code Analyzer, Debugger

Products Used

- MATLAB
- Curve Fitting Toolbox

Range of Programming Techniques

What is a program?

Algorithm

Range of Programming Techniques

Object-Oriented Terminology

Class

- Outline of an idea
- Properties (data, states)
- Methods (algorithms, behavior)
- Object
 - Specific example of a class
 - Instance

Element of the set – *object* Example: Triangle

> Defined set – *class* Example: Polygons

Object-Oriented Programming with MATLAB

- Combines related data and algorithms
- Class definition files describe object behavior
 - Build on existing classes with inheritance
 - Control access to properties and methods with **attributes**
 - Monitor object property changes and actions with events and listeners
- Use matrix-based aspects of MATLAB with objects
- Packages define scope (namespace) of functions and classes

	MATLAB 1997–2007	Release 2008a
Classes	\checkmark	✓
Class definitions		✓
Methods	\checkmark	✓
Properties		1
Events and listeners		1
Overloaded operators	\checkmark	✓
Protected access		✓
Handle (reference) classes		1
Destructors		1
Classes defined in single files		1
Static methods		1
Help for properties		✓

Packaging and Sharing MATLAB Apps

- Create single file for distribution and installation into gallery
- Packaging tool:
 - Automatically includes all necessary files
 - Documents required products

Sharing Results from MATLAB

- Automatically generate reports
 - Publish MATLAB files
- Create graphical user interfaces
 - Programmatically
 - GUIDE: GUI Design Environment (includes a layout editor)
- Package as an app

This demo analyzes wind data measured on a meteorological observation tower to see sensors at 80m. Temperature is also recorded at 3m height. Data is logged every hour

Contents

riral

- Read in Turbine Data from Text File
- Creating a Structure
- Visualize Wind Speed and Temperature
- Average Wind Speed for Different Sensors
- Determine Icing Conditions
- Distribution of Wind Speeds at Hub Height
- Defining the Turbine Power Curve
- Calculating Average Turbine Power and Capacity Factor

Read in Turbine Data from Text File

Deploying to Other Environments

- Share individual algorithms or complete applications
- Create stand-alone applications and software components
- Generate portable C code for desktop or embedded applications

Deploying Applications with MATLAB

Deploying Applications with MATLAB

- Give MATLAB code to other users
 - MATLAB apps
 - MATLAB files
- Share applications with end users who do not need MATLAB
 - Stand-alone executables
 - Shared libraries
 - Software components
- Royalty-free distribution

Summary – MATLAB for Programming

- High-level language
 - Matrix-based
 - Math and graphics functions
 - Traditional programming language features
- Interactive development environment
 - Tools, visualizations, and help
- Supports a range of programming styles
 - Interactive command line, scripts and functions, object-oriented programming

Summary Multiple Ways to Get Help

• doc

help <name>

 Function Browser, function hints, tab completion

		Search D	ocumentation	
			MATLAB Mathematics	Numerical Integration and Differential Equ
		trapz		
		Trapezoidal r	numerical integration	
		Syntax		
Command Window		Z = trapz(Y)		
		Z = trapz(X,Y)		
>> help fitdist		Z = 1	trapz(,dim)	
fitdist Fit probabi	llity distribut			
PD = fitdist(X, I)	STNAME) fits	Descripti	on	
the data in the column vector		Z = trapz(Y) computes an approximation of the integral of Y via the		
the fitted distr	ribution. PD i	multiply Z by	y the spacing increme	ent. Input Y can be complex.
ProbDist class.				
		If Y is a vect	tor, trapz(Y) is the	integral of Y.
DISTNAME can be	'kernel' to fi	t a nonj	parametri	
distribution, or	: it can be any	of the	followin	
names:				
'beta'	Command Window			
'binomial	$f_{x \rightarrow y}$			
	J.,			
	Search for functions			Q
	Categories			
	MATLAB			
	🗎 Language Fundamentals			
	Classester Math			
	Elementa	ary wath		
	Linear Al	gebra		
	Matrix	(Operatio	ns	
	Elneal	Equations	Condition and	
	JX COT	na	Condition num	ber with re
	J× COI	ndest	1-norm condition	on numbe 🔟

Resources

- Webinars
 - Object-Oriented Programming in MATLAB
 - MATLAB for C/C++ Programmers
 - MATLAB to C Made Easy
- Videos and code examples
 - MATLAB product page
 - Documentation

- MATLAB Central
 - Open exchange for the MATLAB and Simulink user community

MATLAB Central

File Exchange

- Download free files
- Over 19000K available including functions apps, examples, and models

MATLAB Answers

- Ask programming questions
- Search 70000K+ existing answers

Cody

 Challenge and expand your knowledge of MATLAB

Blogs

 Read commentary from MathWorks engineers who design, build, and support MATLAB and Simulink

