
1© 2014 The MathWorks, Inc.

Speeding up MATLAB Applications

Sean de Wolski

Application Engineer

2

Non-rigid Displacement Vector Fields

3

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

4

Example: Block Processing Images

 Evaluate function at grid points

 Reevaluate function

over larger blocks

 Compare the results

 Evaluate code performance

5

Effect of Not Preallocating Memory

x = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

6

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

7

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

7

0

4

7

12

8

MATLAB Underlying Technologies

 Commercial libraries

– BLAS:Basic Linear Algebra

Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

9

MATLAB Underlying Technologies

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

10

Summary of Example: Tools

 Used built-in timing functions: tic, toc

11

Summary of Example: Tools

 Used built-in timing functions: timeit

12

Summary of Example: Tools

 Used Code Analyzer to find suboptimal code

13

Summary of Example: Techniques

 Preallocated arrays

>> x = zeros(3,1)

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

14

Summary of Example: Techniques

 Vectorized code

15

Other Best Practices

 Minimize dynamically changing path

>> cd(…)

16

Other Best Practices

 Minimize dynamically changing path

>> cd(…)
instead use:
>> addpath(…)

>> fullfile(…)

17

Other Best Practices

 Use the functional load syntax

>> load('myvars.mat')

18

Other Best Practices

 Use the functional load syntax

>> load('myvars.mat')

instead use:
>> x = load('myvars.mat')

x =

a: 5

b: 'hello'

19

Other Best Practices

 Minimize changing variable class

>> x = 1;

>> x = 'hello';

20

Other Best Practices

 Minimize changing variable class

>> x = 1;

>> x = 'hello';

instead use:
>> x = 1;

>> xnew = 'hello';

21

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

22

Example: Fitting Data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

23

Summary of Example: Tools

 Profiler

– Total number of function calls

– Time per function call

24

Summary of Example: Techniques

 Target significant bottlenecks

– Reduce file I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

25

Summary of Example: Techniques

 Target significant bottlenecks

– Reuse figure

– Avoid printing to command window

26

Steps for Improving Performance

 First focus on getting your code working

 Then speed up the code within core MATLAB

 Consider other languages (i.e. C or Fortran MEX files)

and additional processing power

27

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

28

Why engineers and scientists translate

MATLAB to C today?

Integrate MATLAB algorithms w/ existing C environment

using source code and static/dynamic libraries

Prototype MATLAB algorithms on desktops as

standalone executables

Accelerate user-written MATLAB algorithms

Implement C code on processors or hand-off to

software engineers

29

Challenges with Manual Translation
from MATLAB to C

 Separate functional and implementation specification
– Leads to multiple implementations that are inconsistent

– Hard to modify requirements during development

– Difficult to keep reference MATLAB code and C code in-sync

Re-code in

C/C++

30

Challenges with Manual Translation
from MATLAB to C

 Manual coding errors

Re-code in

C/C++

31

Challenges with Manual Translation
from MATLAB to C

 Time consuming and expensive

Re-code in

C/C++

32

Algorithm Design and

Code Generation in

MATLAB

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB

• Design faster and get to C quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

Automatic Translation of MATLAB to C

verify /accelerate

ite
ra
te

33

Acceleration using MEX

 Speed-up factor will vary

 When you may see a speedup

– Often for Communications and Signal Processing

– Always for Fixed-point

– Likely for loops with states or when vectorization isn’t possible

 When you may not see a speedup

– MATLAB implicitly multithreads computation

– Built-functions call IPP or BLAS libraries

34

Supported MATLAB Language

Features and Functions

Matrices and

Arrays
Data Types

Programming

Constructs
Functions

• Matrix

operations

• N-dimensional

arrays

• Subscripting

• Frames

• Persistent

variables

• Global variables

• Complex

numbers

• Integer math

• Double/single-

precision

• Fixed-point

arithmetic

• Characters

• Structures

• Numeric class

• Variable-sized

data

• MATLAB Classes

• System objects

• Arithmetic,

relational, and

logical operators

• Program control

(if, for, while,

switch)

• MATLAB functions and sub-

functions

• Variable length argument

lists

• Function handles

Supported algorithms

• > 800 MATLAB operators

and functions

• > 200 System objects for

• Signal processing

• Communications

• Computer vision

Supported Functions

http://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

35

More Information

 To learn more visit the product page

– www.mathworks.com/products/matlab-coder

 On-Demand Webinar:

“MATLAB to C Made Easy”

Search at

http://www.mathworks.com/company/events/webinars/index.html

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/company/events/webinars/index.html

36

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

37

Going Beyond Serial MATLAB Applications

Worker Worker

Worker

Worker

Worker
Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

38

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

39

Parallel Computing on the Desktop

 Speed up parallel applications

on local computer

 Take full advantage of desktop

power by using CPUs and GPUs

 Separate computer cluster

not required

Desktop Computer

Parallel Computing Toolbox

40

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

41

Tools Providing Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Communications System Toolbox

 Simulink Design Optimization

 Bioinformatics Toolbox

 Image Processing Toolbox

 …

Worker

Worker

Worker

WorkerWorker

Worker

WorkerTOOLBOXES

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

42

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

 Simple programming constructs:

parfor, batch, distributed

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

43

Running Independent Tasks or Iterations

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples include parameter sweeps and Monte Carlo

simulations

Time Time

44

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

45

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODEs

– Deflection of a truss under a dynamic load

Area, A

Displacement, d

Load

Length, L

Height, H

N = 4

𝑀 𝑥 + 𝐶 𝑥 + 𝐾𝑥 = 𝐹

46

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODEs

– Deflection of a truss under a dynamic load

– Sweeping two parameters:

 Number of truss elements

 Cross sectional area of truss elements

Displacement, d

Load

Length, L

Height, H

N = 4

𝑀 𝑥 + 𝐶 𝑥 + 𝐾𝑥 = 𝐹

Area, A

47

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

 Simple programming constructs:

parfor, batch, distributed

 Full control of parallelization:

jobs and tasks, spmd

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

48

Scale Up to Clusters, Grids and Clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

49

Scheduling Work

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

50

MATLAB

Desktop (Client)

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…)

51

MATLAB

Desktop (Client)

Offload and Scale Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…,'Pool',…)

52

What is a Graphics Processing Unit (GPU)

 Originally for graphics acceleration, now

also used for scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

53

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory

54

GPU Requirements

MATLAB Release Required Compute Capability

MATLAB R2014b 2.0 or greater

MATLAB R2014a and

earlier releases

1.3 or greater

See a complete listing at www.nvidia.com/object/cuda_gpus.html

 Parallel Computing Toolbox requires

NVIDIA GPUs

 This includes the Tesla 20-series

products

http://www.nvidia.com/object/cuda_gpus.html

55

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

56

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

57

Example: Solving 2D Wave Equation

 Solve 2nd order wave equation using spectral methods:

𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

58

Benchmark: Solving 2D Wave Equation
CPU v. GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU

59

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

 Advanced programming constructs:
arrayfun, spmd

 Interface for experts:

CUDAKernel, MEX support

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu

www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code

http://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu
http://www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html

60

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

61

Key Takeaways

 Consider performance benefit of vector and matrix

operations in MATLAB

 Analyze your code for bottlenecks and address

most critical items

 Leverage MATLAB Coder to speed up applications

through generated C/C++ code

 Leverage parallel computing tools

to take advantage of additional

computing resources

62

Sample of Other Performance Resources

 MATLAB documentation

MATLAB  Advanced Software Development  Performance and Memory

 Accelerating MATLAB Algorithms and Applications
http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-

algorithms-and-applications.html

 The Art of MATLAB, Loren Shure’s blog
blogs.mathworks.com/loren/

 MATLAB Answers
http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/

63© 2014 The MathWorks, Inc.

