
1© 2014 The MathWorks, Inc.

Speeding up MATLAB Applications

Sean de Wolski

Application Engineer

2

Non-rigid Displacement Vector Fields

3

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

4

Example: Block Processing Images

 Evaluate function at grid points

 Reevaluate function

over larger blocks

 Compare the results

 Evaluate code performance

5

Effect of Not Preallocating Memory

x = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

6

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

7

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

7

0

4

7

12

8

MATLAB Underlying Technologies

 Commercial libraries

– BLAS:Basic Linear Algebra

Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

9

MATLAB Underlying Technologies

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

10

Summary of Example: Tools

 Used built-in timing functions: tic, toc

11

Summary of Example: Tools

 Used built-in timing functions: timeit

12

Summary of Example: Tools

 Used Code Analyzer to find suboptimal code

13

Summary of Example: Techniques

 Preallocated arrays

>> x = zeros(3,1)

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

14

Summary of Example: Techniques

 Vectorized code

15

Other Best Practices

 Minimize dynamically changing path

>> cd(…)

16

Other Best Practices

 Minimize dynamically changing path

>> cd(…)
instead use:
>> addpath(…)

>> fullfile(…)

17

Other Best Practices

 Use the functional load syntax

>> load('myvars.mat')

18

Other Best Practices

 Use the functional load syntax

>> load('myvars.mat')

instead use:
>> x = load('myvars.mat')

x =

a: 5

b: 'hello'

19

Other Best Practices

 Minimize changing variable class

>> x = 1;

>> x = 'hello';

20

Other Best Practices

 Minimize changing variable class

>> x = 1;

>> x = 'hello';

instead use:
>> x = 1;

>> xnew = 'hello';

21

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

22

Example: Fitting Data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

23

Summary of Example: Tools

 Profiler

– Total number of function calls

– Time per function call

24

Summary of Example: Techniques

 Target significant bottlenecks

– Reduce file I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

25

Summary of Example: Techniques

 Target significant bottlenecks

– Reuse figure

– Avoid printing to command window

26

Steps for Improving Performance

 First focus on getting your code working

 Then speed up the code within core MATLAB

 Consider other languages (i.e. C or Fortran MEX files)

and additional processing power

27

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

28

Why engineers and scientists translate

MATLAB to C today?

Integrate MATLAB algorithms w/ existing C environment

using source code and static/dynamic libraries

Prototype MATLAB algorithms on desktops as

standalone executables

Accelerate user-written MATLAB algorithms

Implement C code on processors or hand-off to

software engineers

29

Challenges with Manual Translation
from MATLAB to C

 Separate functional and implementation specification
– Leads to multiple implementations that are inconsistent

– Hard to modify requirements during development

– Difficult to keep reference MATLAB code and C code in-sync

Re-code in

C/C++

30

Challenges with Manual Translation
from MATLAB to C

 Manual coding errors

Re-code in

C/C++

31

Challenges with Manual Translation
from MATLAB to C

 Time consuming and expensive

Re-code in

C/C++

32

Algorithm Design and

Code Generation in

MATLAB

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB

• Design faster and get to C quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

Automatic Translation of MATLAB to C

verify /accelerate

ite
ra
te

33

Acceleration using MEX

 Speed-up factor will vary

 When you may see a speedup

– Often for Communications and Signal Processing

– Always for Fixed-point

– Likely for loops with states or when vectorization isn’t possible

 When you may not see a speedup

– MATLAB implicitly multithreads computation

– Built-functions call IPP or BLAS libraries

34

Supported MATLAB Language

Features and Functions

Matrices and

Arrays
Data Types

Programming

Constructs
Functions

• Matrix

operations

• N-dimensional

arrays

• Subscripting

• Frames

• Persistent

variables

• Global variables

• Complex

numbers

• Integer math

• Double/single-

precision

• Fixed-point

arithmetic

• Characters

• Structures

• Numeric class

• Variable-sized

data

• MATLAB Classes

• System objects

• Arithmetic,

relational, and

logical operators

• Program control

(if, for, while,

switch)

• MATLAB functions and sub-

functions

• Variable length argument

lists

• Function handles

Supported algorithms

• > 800 MATLAB operators

and functions

• > 200 System objects for

• Signal processing

• Communications

• Computer vision

Supported Functions

http://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

35

More Information

 To learn more visit the product page

– www.mathworks.com/products/matlab-coder

 On-Demand Webinar:

“MATLAB to C Made Easy”

Search at

http://www.mathworks.com/company/events/webinars/index.html

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/company/events/webinars/index.html

36

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

37

Going Beyond Serial MATLAB Applications

Worker Worker

Worker

Worker

Worker
Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

38

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

39

Parallel Computing on the Desktop

 Speed up parallel applications

on local computer

 Take full advantage of desktop

power by using CPUs and GPUs

 Separate computer cluster

not required

Desktop Computer

Parallel Computing Toolbox

40

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

41

Tools Providing Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Communications System Toolbox

 Simulink Design Optimization

 Bioinformatics Toolbox

 Image Processing Toolbox

 …

Worker

Worker

Worker

WorkerWorker

Worker

WorkerTOOLBOXES

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

42

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

 Simple programming constructs:

parfor, batch, distributed

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

43

Running Independent Tasks or Iterations

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples include parameter sweeps and Monte Carlo

simulations

Time Time

44

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

45

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODEs

– Deflection of a truss under a dynamic load

Area, A

Displacement, d

Load

Length, L

Height, H

N = 4

𝑀 𝑥 + 𝐶 𝑥 + 𝐾𝑥 = 𝐹

46

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODEs

– Deflection of a truss under a dynamic load

– Sweeping two parameters:

 Number of truss elements

 Cross sectional area of truss elements

Displacement, d

Load

Length, L

Height, H

N = 4

𝑀 𝑥 + 𝐶 𝑥 + 𝐾𝑥 = 𝐹

Area, A

47

Using Additional Cores/Processors (CPUs)

 Support built into Toolboxes

 Simple programming constructs:

parfor, batch, distributed

 Full control of parallelization:

jobs and tasks, spmd

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

48

Scale Up to Clusters, Grids and Clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

49

Scheduling Work

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

50

MATLAB

Desktop (Client)

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…)

51

MATLAB

Desktop (Client)

Offload and Scale Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…,'Pool',…)

52

What is a Graphics Processing Unit (GPU)

 Originally for graphics acceleration, now

also used for scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

53

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory

54

GPU Requirements

MATLAB Release Required Compute Capability

MATLAB R2014b 2.0 or greater

MATLAB R2014a and

earlier releases

1.3 or greater

See a complete listing at www.nvidia.com/object/cuda_gpus.html

 Parallel Computing Toolbox requires

NVIDIA GPUs

 This includes the Tesla 20-series

products

http://www.nvidia.com/object/cuda_gpus.html

55

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

56

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

57

Example: Solving 2D Wave Equation

 Solve 2nd order wave equation using spectral methods:

𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

58

Benchmark: Solving 2D Wave Equation
CPU v. GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU

59

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

 Advanced programming constructs:
arrayfun, spmd

 Interface for experts:

CUDAKernel, MEX support

E
a

s
e

 o
f

U
s

e
G

re
a
te

r C
o

n
tro

l

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu

www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code

http://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu
http://www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html

60

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

61

Key Takeaways

 Consider performance benefit of vector and matrix

operations in MATLAB

 Analyze your code for bottlenecks and address

most critical items

 Leverage MATLAB Coder to speed up applications

through generated C/C++ code

 Leverage parallel computing tools

to take advantage of additional

computing resources

62

Sample of Other Performance Resources

 MATLAB documentation

MATLAB Advanced Software Development Performance and Memory

 Accelerating MATLAB Algorithms and Applications
http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-

algorithms-and-applications.html

 The Art of MATLAB, Loren Shure’s blog
blogs.mathworks.com/loren/

 MATLAB Answers
http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/

63© 2014 The MathWorks, Inc.

