A team of researchers, including scientists from the National Superconducting Cyclotron Laboratory, or NSCL, and the Facility for Rare Isotope Beams, or FRIB, at Michigan State University, have solved the case of zirconium-80’s missing mass.
To be fair, they also broke the case. Experimentalists showed that zirconium-80 — a zirconium atom with 40 protons and 40 neutrons in its core or nucleus — is lighter than expected, using NSCL’s unparalleled ability to create rare isotopes and analyze them. Then FRIB’s theorists were able to account for that missing piece using advanced nuclear models and novel statistical methods.
“The interaction between nuclear theorists and experimentalists is like a coordinated dance,” said Alec Hamaker, a graduate research assistant and first author of the study the team published Nov. 25 in the journal Nature Physics. “Each take turns leading and following the other.”
“Sometimes theory makes predictions ahead of time, and other times experiments find things that weren’t expected,” said Ryan Ringle, FRIB Laboratory senior scientist, who was in the group that made the zirconium-80 mass measurement. Ringle is also an adjunct associate professor of physics at FRIB and MSU’s Department of Physics and Astronomy in the College of Natural Science.
Read full story at MSU Today.